ระบบเครือข่าย

ระบบเครือข่ายและการสื่อสารบนเครือข่าย 
       
    การสื่อสารข้อมูล (Data Communications) หมาย ถึง กระบวนการถ่ายโอนหรือแลกเปลี่ยนข้อมูลกันระหว่างผู้ส่งและผู้รับ โดยผ่านช่องทางสื่อสาร เช่น อุปกรณ์อิเล็กทรอนิกส์ หรือคอมพิวเตอร์เป็นตัวกลางในการส่งข้อมูล เพื่อให้ผู้ส่งและผู้รับเกิดความเข้าใจซึ่งกันและกัน 
           วิธีการส่งข้อมูล จะ แปลงข้อมูลเป็นสัญญาณ หรือรหัสเสียก่อนแล้วจึงส่งไปยังผู้รับ และเมื่อถึงปลายทางหรือผู้รับก็จะต้องมีการแปลงสัญญาณนั้น กลับมาให้อยู่ในรูปที่มนุษย์ สามารถที่จะเข้าใจได้ ในระหว่างการส่งอาจจะมีอุปสรรค์ที่เกิดขึ้นก็คือ สิ่งรบกวน (Noise) จาก ภายนอกทำให้ข้อมูลบางส่วนเสียหาย หรือผิดเพี้ยนไปได้ซึ่งระยะทางก็มีส่วนเกี่ยวข้อง ด้วยเพราะถ้าระยะทางในการส่งยิ่งมากก็อาจจะทำให้เกิดสิ่งรบกวนได้มากเช่นกัน จึงต้องมีหาวิธีลดสิ่งรบกวน
เหล่านี้ โดยการพัฒนาตัวกลางในการสื่อสารที่จะทำให้เกิดการรบกวนน้อยที่สุด
 

           องค์ประกอบขั้นพื้นฐานของระบบสื่อสารโทรคมนาคม   สามารถจำแนกออกเป็นส่วนประกอบได้ดังต่อไปนี้
             1. ผู้ส่งข่าวสารหรือแหล่งกำเนิดข่าวสาร (source)   อาจจะเป็นสัญญาณต่าง ๆ เช่น สัญญาณภาพ 
ข้อมูล และเสียงเป็นต้น  ในการติดต่อสื่อสารสมัยก่อนอาจจะใช้แสงไฟ  ควันไฟ หรือท่าทางต่าง ๆ ก็นับว่าเป็นแหล่งกำเนิดข่าวสาร  จัดอยู่ในหมวดหมู่นี้เช่นกัน
             2. ผู้รับข่าวสารหรือจุดหมายปลายทางของข่าวสาร (sink) ซึ่งจะรับรู้จากสิ่งที่ผู้ส่งข่าวสาร หรือแหล่งกำเนิดข่าวสารส่งผ่านมาให้ตราบใด
ที่การติดต่อสื่อสารบรรลุวัตถุประสงค์  ผู้รับสารหรือจุดหมายปลายทางของข่าวสารก็จะได้รับข่าวสารนั้น ๆ  ถ้าผู้รับสารหรือ จุดหมายปลายทางไม่ได้รับ
ข่าวสาร ก็แสดงว่าการสื่อสารนั้นไม่ประสบความสำเร็จ  กล่าวคือไม่มีการสื่อสารเกิดขึ้นนั่นเอง

              3. ช่องสัญญาณ  (channel)  ในที่นี้อาจจะหมายถึงสื่อกลางหรือตัวกลางที่ข่าวสารเดินทางผ่าน  อาจจะเป็นอากาศ  สายนำสัญญาณต่าง ๆ หรือแม้กระทั่งของเหลว  เช่น  น้ำ  น้ำมัน เป็นต้น  เปรียบเสมือนเป็นสะพานที่จะให้ข่าวสารข้ามจากฝั่งหนึ่งไปยังอีกฝั่งหนึ่ง
              4. การเข้ารหัส  (encoding)  เป็นการช่วยให้ผู้ส่งข่าวสารและผู้รับข่าวสารมีความเข้าใจตรงกันในการสื่อความหมาย  จึงมีความจำเป็นต้องแปลง
ความหมายนี้  การเข้ารหัสจึงหมายถึงการแปลงข่าวสารให้อยู่ในรูปพลังงาน ที่พร้อมจะส่งไปในสื่อกลาง   ทางผู้ส่งมีความเข้าใจต้องตรงกันระหว่าง ผู้ส่งและผู้รับ หรือมีรหัสเดียวกัน การสื่อสารจึงเกิดขึ้นได้
              5. การถอดรหัส (decoding)  หมายถึงการที่ผู้รับข่าวสารแปลงพลังงานจากสื่อกลางให้กลับไปอยู่ในรูปข่าวสารที่ส่งมาจากผู้ส่งข่าวสาร  โดยมีความเข้าในหรือรหัสตรงกัน
              6. สัญญาณรบกวน (noise)  เป็นสิ่งที่มีอยู่ในธรรมชาติ  มักจะลดทอนหรือรบกวนระบบ อาจจะเกิดขึ้นได้ทั้งทางด้านผู้ส่งข่าวสาร  ผู้รับข่าวสาร  และช่องสัญญาณ    แต่ในการศึกษาขั้นพื้นฐานมักจะสมมติให้ทางด้านผู้ส่งข่าวสารและผู้รับข่าวสารไม่มีความผิดพลาด  ตำแหน่งที่ใช้วิเคราะห์ มักจะเป็นที่ตัวกลางหรือช่องสัญญาณ  เมื่อไรที่รวมสัญญาณรบกวนด้านผู้ส่งข่าวสารและด้านผู้รับข่าวสาร  ในทางปฎิบัติมักจะใช้ วงจรกรอง (filter) 
กรองสัญญาณแต่ต้นทาง  เพื่อให้การสื่อสารมีคุณภาพดียิ่งขึ้นแล้วค่อยดำเนินการ  เช่น  การเข้ารหัสแหล่งข้อมูล  เป็นต้น

ข่ายการสื่อสารข้อมูล

            หมายถึง   การรับส่งข้อมูลหรือสารสนเทศจากที่หนึ่งไปยังอีกที่หนึ่ง โดยอาศัยระบบการส่งข้อมูล ทางคลื่นไฟฟ้าหรือแสง  อุปกรณ์ที่ประกอบเป็นระบบการสื่อสารข้อมูลโดยทั่วไปเรียกว่า
ข่ายการสื่อสารข้อมูล (Data Communication Networks)
องค์ประกอบพื้นฐาน  
1.               หน่วยส่งข้อมูล (Sending Unit)
2.               ช่องทางการส่งข้อมูล (Transmisstion Channel)
3.               หน่วยรับข้อมูล (Receiving Unit)
วัตถุประสงค์หลักของการนำการสื่อการข้อมูลมาประยุกต์ใช้ในองค์การประกอบด้วย  
1.               เพื่อรับข้อมูลและสารสนเทศจากแหล่งกำเนิดข้อมูล
2.               เพื่อส่งและกระจายข้อมูลได้อย่างรวดเร็ว
3.               เพื่อลดเวลาการทำงาน
4.               เพื่อการประหยัดค่าใช้จ่ายในการส่งข่าวสาร
5.               เพื่อช่วยขยายการดำเนินการองค์การ
6.               เพื่อช่วยปรับปรุงการบริหารขององค์การ 
ประโยชน์ของการสื่อสารข้อมูล

   1) การจัดเก็บข้อมูลได้ง่ายและสื่อสารได้รวดเร็ว การจัดเก็บซึ่อยู่ในรูปของสัญญาณอิเล็กทรอนิกส์ สามารถจัดเก็บไว้ในแผ่นบันทึกที่มีความหนาแน่นสูง
แผ่นบันทึกแผ่นหนึ่งสามารถบันทึกข้อมูลได้มากกกว่า 1 ล้านตัวอักษร สำหรับการสื่อสารข้อมูลนั้น ถ้าข้อมูลผ่านสายโทรศัพท์ได้ในอัตรา 120 ตัวอักษรต่อวินาทีแล้ว จะส่งข้อมูล 200 หน้าได้ในเวลา 40 นาที โดยไม่ต้องเสียเวลานั่งป้อนข้อมูลเหล่านั้นซ้ำใหม่อีก
   2) ความ ถูกต้องของข้อมูล โดยปกติวิธีส่งข้อมูลด้วยสัญญาณอิเล็กทรอนิกส์ จากจุดหนึ่งไปยังอีกจุดหนึ่งด้วยระบบดิจิตอล วิธีการส่งข้อมูลนั้นมีการตรวจสอบ
สภาพของข้อมูล หากข้อมูลผิดพลาดก็จะมีการรับรู้ และพยายามหาวิธีแก้ไขให้ข้อมูลที่ได้รับมีความถูกต้อง โดยอาจให้ทำการส่งใหม่ หรือกรณีที่ผิดพลาดไม่มากนัก ฝ่ายผู้รับอาจใช้โปรแกรมของตนแก้ไขข้อมูลให้ถูกต้องได้
   3) ความเร็วของการทำงาน โดยปกติสัญญาณทางไฟฟ้าจะเดินทางด้วยความเร็วเท่าแสง ทำให้การใช้คอมพิวเตอร์ส่งข้อมูลจากซีกโลกหนึ่ง ไปยังอีกซีก
โลก หนึ่ง หรือค้นหาข้อมูลจากฐานข้อมูลขนาดใหญ่ สามารถทำได้รวดเร็ว ความรวดเร็วของระบบทำให้ผู้ใช้สะดวกสบายยิ่งขึ้น เช่น บริษัทสายการบินทุกแห่ง
สามารถทราบข้อมูลของทุกเที่ยวบินได้อย่างรวดเร็ว ทำให้การจองที่นั่งของสายการบินสามารถทำได้ทันที
   4) ต้น ทุนประหยัด การเชื่อมต่อคอมพิวเตอร์เข้าหากันเป็นเครือข่าย เพื่อส่งหรือสำเนาข้อมูล ทำให้ราคาต้นทุนของการใช้ข้อมูลประหยัดขึ้น เมื่อเทียบกับการ
จัดส่งแบบวิธีอื่น สามารถส่งข้อมูลให้กันและกันผ่านทางสายโทรศัพท์ได้    
 
สื่อกลางในการสื่อสารข้อมูล 
 
            ตัว กลางหรือสายเชื่อมโยง เป็นส่วนที่ทำให้เกิดการเชื่อมต่อระหว่างอุปกรณ์ต่างๆ เข้าด้วยกัน และอุปกรณ์นี้ยอมให้ข่าวสารข้อมูลเดินทางผ่าน จากผู้ส่งไปสู่ผู้รับ สื่อกลางที่ใช้ในการสื่อสารข้อมูลมีอยู่หลายประเภท แต่ละประเภทมความแตกต่างกันในด้านของปริมาณข้อมูล ที่สื่อกลางนั้น ๆ สามารถนำผ่านไปได้ในเวลาขณะใดขณะหนึ่ง การวัดปริมาณหรือความจุในการนำข้อมูลหรือ ที่เรียกกันว่าแบบด์วิดท์ (bandwidth) มีหน่วยเป็นจำนวน
บิตข้อมูลต่อวินาที (bit per second : bps) ลักษณะของตัวกลางต่างๆ มีดังต่อไปนี้
สื่อกลางประเภทมีสาย

    
           เช่น สายโทรศัพท์ เคเบิลใยแก้วนำแสง เป็นต้น สื่อที่จัดอยู่ในการสื่อสารแบบมีสายที่นิยมใช้ในปัจจุบัน ได้แก่ 
สายทองแดงแบบไม่หุ้มฉนวน (Unshield Twisted Pair)              มีราคาถูกและนิยมใช้กันมากที่สุด ส่วนใหญ่มักใช้กับระบบโทรศัพท์ แต่สายแบบนี้มักจะถูกรบกวนได้ง่าย และไม่ค่อยทนทาน

สายทองแดงแบบหุ้มฉนวน (Shield Twisted Pair)
               มี ลักษณะเป็นสองเส้น มีแนวแล้วบิดเป็นเกลี่ยวเข้าด้วยกันเพื่อลดเสียงรบกวน มีฉนวนหุ้มรอบนอก มีราคาถูก ติดตั้งง่าย น้ำหนักเบาและ การรบกวนทางไฟฟ้าต่ำ สายโทรศัพท์จัดเป็นสายคู่บิดเกลี่ยวแบบหุ้มฉนวน



สายโคแอคเชียล (Coaxial)
             สาย แบบนี้จะประกอบด้วยตัวนำที่ใช้ในการส่งข้อมูลเส้นหนึ่งอยู่ตรงกลางอีกเส้น หนึ่งเป็นสายดิน ระหว่างตัวนำสองเส้นนี้จะมีฉนวนพลาสติก กั้นสายโคแอคเชียลแบบหนาจะส่งข้อมูลได้ไกลหว่าแบบบางแต่มีราคาแพงและติดตั้ง ได้ยากกว่า
            สายเคเบิลแบบโคแอกเชียลหรือเรียกสั้น ๆ ว่า  "สายโคแอก"  จะเป็นสายสื่อสารที่มีคุณภาพที่กว่าและราคาแพงกว่า สายเกลียวคู่  ส่วนของสายส่งข้อมูลจะอยู่ตรงกลางเป็นลวดทองแดงมีชั้นของตัวเหนี่ยวนำหุ้มอยู่  2  ชั้น  ชั้นในเป็นฟั่นเกลียวหรือชั้นแข็ง  ชั้นนอกเป็นฟั่นเกลียว และคั่นระหว่างชั้นด้วยฉนวนหนา  เปลือกชั้นนอกสุดเป็นฉนวน  สายโคแอกสามารถม้วนโค้งงอได้ง่าย  มี  2  แบบ คือ  75  โอมห์ และ  50 โอมห์  ขนาดของสายมีตั้งแต่  0.4 - 1.0  นิ้ว   ชั้นตัวเหนี่ยวนำทำหน้าที่ป้องกันการสูญเสียพลังงานจากแผ่รังสี  เปลือกฉนวนหนาทำให้สายโคแอก
มีความคงทนสามารถฝังเดินสายใต้พื้นดินได้  นอกจากนั้นสาย  โคแอกยังช่วยป้องกัน  "การสะท้อนกลับ" (Echo)  ของเสียงได้อีกด้วยและลดการ รบกวนจากภายนอกได้ดีเช่นกัน
           สายโคแอกสามารถส่งสัญญาณได้ ทั้งในช่องทางแบบเบสแบนด์และแบบบรอดแบนด์ การส่งสัญญาณในเบสแบนด์สามารถทำได้เพียง  1 ช่องทางและเป็นแบบครึ่งดูเพล็กซ์  แต่ในส่วนของการส่งสัญญาณ ในบรอดแบนด์จะเป็นเช่นเดียวกับสายเคเบิลทีวี  คือสามารถส่งได้พร้อมกันหลายช่องทาง ทั้งข้อมูลแบบดิจิตอลและแบบอนาล็อก  สายโคแอกของเบสแบนด์สามารถส่งสัญญาณได้ไกลถึง  2  กม.  ในขณะที่บรอดแบนด์ส่งได้ไกลกว่าถึง  6 เท่า  โดยไม่ต้องเครื่องทบทวน  หรือเครื่องขยายสัญญาณเลย  ถ้าอาศัยหลักการมัลติเพล็กซ์สัญญาณแบบ  FDM  สายโคแอกสามารถมีช่องทาง (เสียง)  ได้ถึง  10,000  ช่องทางในเวลาเดียวกัน อัตราเร็วในการส่งข้อมูลมีได้สูงถึง  50  เมกะบิตต่อวินาที  หรือ 800 เมกะบิตต่อวินาที  ถ้าใช้เครื่องทบทวนสัญญาณทุก ๆ 1.6  กม. ตัวอย่างการใช้สายโคแอกในการส่งสัญญาณข้อมูลที่ใช้กันมากในปัจจุบัน คือสายเคเบิลทีวี  และสายโทรศัพท์ทางไกล (อนาล็อก)  สายส่งข้อมูลในระบบเครือข่ายท้องถิ่น  หรือ  LAN (ดิจิตอล)  หรือใช้ในการเชื่อมโยงสั้น ๆ ระหว่างอุปกรณ์อิเล็กทรอนิกส์  

ใยแก้วนำแสง (Optic Fiber)
              ทำ จากแก้วหรือพลาสติกมีลักษณะเป็นเส้นบางๆ คล้าย เส้นใยแก้วจะทำตัวเป็นสื่อในการส่งแสงเลเซอร์ที่มีความเร็วในการส่งสัญญาณ เท่ากับ ความเร็วของแสง

              หลักการทั่วไปของการสื่อสารในสายไฟเบอร์ออปติกคือการเปลี่ยนสัญญาณ (ข้อมูล)  ไฟฟ้าให้เป็นคลื่นแสงก่อน  จาก นั้นจึงส่งออกไปเป็นพัลส์ ของแสง ผ่านสายไฟเบอร์ออปติกสายไฟเบอร์ออปติกทำจากแก้วหรือพลาสติกสามารถส่งลำแสง ผ่านสายได้ทีละหลาย ๆ ลำแสงด้วยมุมที่ต่างกัน  ลำแสงที่ส่งออกไปเป็นพัลส์นั้นจะสะท้อนกลับไปมาที่ผิวของสายชั้นในจนถึงปลายทาง
                จากสัญญาณข้อมูลซึ่งอาจจะเป็นสัญญาณอนาล็อกหรือดิจิตอล จะผ่านอุปกรณ์ที่ทำหน้าที่มอดูเลตสัญญาณเสียก่อน  จากนั้นจะส่งสัญญาณมอดูเลต ผ่านตัวไดโอดซึ่งมี  2  ชนิดคือ  LED  ไดโอด  (light Emitting Diode)  และเลเซอร์ไดโอด หรือ  ILD ไดโอด  (Injection Leser Diode)  ไดโอดจะมีหน้าที่เปลี่ยนสัญญาณมอดูเลตให้เป็นลำแสงเลเซอร์ซึ่งเป็นคลื่นแสงในย่านที่มองเห็นได้  หรือเป็นลำแสงในย่านอินฟราเรดซึ่งไม่สามารถมองเห็นได้  ความถี่ย่านอินฟราเรดที่ใช้จะอยู่ในช่วง 1014-1015 เฮิรตซ์  ลำแสงจะถูกส่งออกไปตามสายไฟเบอร์ออปติก  เมื่อถึงปลายทางก็จะมีตัวโฟโต้ไดโอด (Photo Diode)  ที่ทำหน้าที่รับลำแสงที่ถูกส่งมาเพื่อเปลี่ยนสัญญาณแสงให้กลับไปเป็นสัญญาณมอดูเลตตามเดิม  จากนั้นก็จะส่งสัญญาณผ่านเข้าอุปกรณ์ดีมอดูเลต  เพื่อทำการดีมอดูเลตสัญญาณมอดูเลตให้เหลือแต่สัญญาณข้อมูลที่ต้องการ
               สายไฟเบอร์ออปติกสามารถมีแบนด์วิดท์  (BW)  ได้กว้างถึง  3 จิกะเฮิรตซ์ (1 จิกะ = 109) และมีอัตราเร็วในการส่งข้อมูลได้ถึง  1 จิกะบิต ต่อวินาที  ภายในระยะทาง  100 กม.  โดยไม่ต้องการเครื่องทบทวนสัญญาณเลย  สายไฟเบอร์ออปติกสามารถมีช่องทางสื่อสารได้มากถึง  20,000-60,000  ช่องทาง  สำหรับการส่งข้อมูลในระยะทางไกล ๆ ไม่เกิน  10 กม.  จะสามารถมีช่องทางได้มากถึง 100,000  ช่องทางทีเดียว


ข้อดีของใยแก้วนำแสดงคือ
1. ป้องกันการรบกวนจากสัญญาณไฟฟ้าได้มาก
2. ส่งข้อมูลได้ระยะไกลโดยไม่ต้องมีตัวขยายสัญญาณ
3. การดักสัญญาณทำได้ยาก ข้อมูลจึงมีความปลอดภัยมากกว่าสายส่งแบบอื่น
4. ส่งข้อมูลได้ด้วยความเร็วสูงและสามารถส่งได้มาก ขนาดของสายเล็กและน้ำหนักเบา 
 
สื่อกลางประเภทไม่มีสาย

ระบบไมโครเวฟ  (Microwave System)  
               การส่งสัญญาณข้อมูลไปกลับคลื่นไมโครเวฟเป็นการส่งสัญญาณข้อมูลแบบรับช่วงต่อๆ กันจากหอ (สถานี)  ส่ง-รับสัญญาณหนึ่งไปยังอีกหอหนึ่ง  แต่ละหาจะครอบคลุมพื้นที่รับสัญญาณประมาณ 30-50  กม.  ระยะห่างของแต่ละหอคำนวณง่าย ๆ ได้จาก
สูตร  
                  d  = 7.14 (1.33h)1/2 กม. 
         เมื่อ     d = ระยะห่างระหว่างหอ  h = ความสูงของหอ  

         การส่งสัญญาณข้อมูลไมโครเวฟมักใช้กันในกรณีที่การติดตั้งสายเคเบิลทำได้ไม่สะดวก เช่น ในเขตเมืองใหญ่ ๆ หรือในเขตที่ป่าเขา  แต่ละสถานีไมโครเวฟจะติดตั้งจานส่ง-รับสัญญาณข้อมูล  ซึ่งมีเส้นผ่าศูนย์กลางประมาณ  10 ฟุต  สัญญาณไมโครเวฟเป็นคลื่นย่านความถี่สูง 
(2-10 จิกะเฮิรตซ์)  เพื่อป้องกันการแทรกหรือรบกวนจากสัญญาณอื่น ๆ  แต่สัญญาณอาจจะอ่อนลง  หรือหักเหได้ในที่มีอากาศร้อนจัด  พายุหรือฝน  ดังนั้นการติดตั้งจาน ส่ง-รับสัญญาณจึงต้องให้หันหน้าของจานตรงกัน  และหอยิ่งสูงยิ่งส่งสัญญาณได้ไกล
          ปัจจุบันมีการใช้การส่งสัญญาณข้อมูลทางไมโครเวฟกันอย่างแพร่หลาย  สำหรับการสื่อสารข้อมูลในระยะทางไกล ๆ หรือระหว่างอาคาร  โดยเฉพาะในกรณีที่ไม่สะดวกที่จะใช้สายไฟเบอร์ออปติก  หรือการสื่อสารดาวเทียม  อีกทั้งไมโครเวฟยังมีราคาถูกกว่า  และติดตั้งได้ง่ายกว่า  และสามารถส่งข้อมูลได้คราวละมาก ๆ ด้วย  อย่างไรก็ตามปัจจัยสำคัญที่ทำให้สื่อกลางไมโครเวฟเป็นที่นิยม  คือราคาที่ถูกกว่า

การสื่อสารด้วยดาวเทียม  (Satellite Transmission) 
             ที่จริงดาวเทียมก็คือสถานีไมโครเวฟลอยฟ้านั่นเอง  ซึ่งทำหน้าที่ขยายและทบทวนสัญญาณข้อมูล  รับและส่งสัญญาณข้อมูลกับสถานีดาวเทียม ที่อยู่บนพื้นโลก  สถานี ดาวเทียมภาคพื้นจะทำการส่งสัญญาณข้อมูล ไปยังดาวเทียมซึ่งจะหมุนไปตามการหมุนของโลกซึ่งมีตำแหน่งคงที่เมื่อเทียมกับ ตำแหน่งบนพื้นโลก  ดาวเทียมจะถูกส่งขึ้นไปให้ลอยอยู่สูงจากพื้นโลกประมาณ  23,300  กม.  เครื่องทบทวนสัญญาณของดาวเทียม (Transponder)  จะรับสัญญาณข้อมูลจากสถานีภาคพื้นซึ่งมีกำลังอ่อนลงมากแล้วมาขยาย   จากนั้นจะทำการทบทวนสัญญาณ และตรวจสอบตำแหน่งของสถานีปลายทาง  แล้วจึงส่งสัญญาณข้อมูลไปด้วยความถี่ในอีกความถี่หนึ่งลงไปยังสถานีปลายทาง  การส่งสัญญาณข้อมูลขึ้นไปยังดาวเทียมเรียกว่า  "สัญญาณอัปลิงก์"
(Up-link) และการส่งสัญญาณข้อมูลกลับลงมายังพื้นโลกเรียกว่า "สัญญาณ ดาวน์-ลิงก์ (Down-link)
              ลักษณะของการรับส่งสัญญาณข้อมูลอาจจะเป็นแบบจุดต่อจุด (Point-to-Point)  หรือแบบแพร่สัญญาณ (Broadcast)  สถานีดาวเทียม 
1 ดวง สามารถมีเครื่องทบทวนสัญญาณดาวเทียมได้ถึง  25 เครื่อง   และสามารถครอบคลุมพื้นที่การส่งสัญญาณได้ถึง  1 ใน ของพื้นผิวโลก  ดังนั้นถ้าจะส่งสัญญาณข้อมูลให้ได้รอบโลกสามารถทำได้โดยการส่งสัญญาณผ่านสถานีดาวเทียมเพียง  3  ดวงเท่านั้น

            ระหว่างสถานีดาวเทียม  2  ดวง  ที่ใช้ความถี่ของสัญญาณเท่ากันถ้าอยู่ใกล้กันเกินไปอาจจะทำให้เกิดการรบกวนสัญญาณ ซึ่งกันและกันได้  เพื่อหลีกเลี่ยงการรบกวน  หรือชนกันของสัญญาณดาวเทียม จึงได้มีการกำหนดมาตรฐานระยะห่างของสถานีดาวเทียม และย่านความถี่ของสัญญาณดังนี้
1.  ระยะห่างกัน  4 องศา  (วัดมุมเทียงกับจุดศูนย์กลางของโลก)  ให้ใช้ย่านความถี่ของสัญญาณ  4/6 จิกะเฮิรตซ์  หรือย่าน C แบนด์โดยมีแบนด์วิดท์ของสัญญาณอัป-ลิงก์เท่ากับ  5.925-6.425 จิกะเฮิรตซ์  และมีแบนด์วิดท์ของสัญญาณดาวน์-ลิงก์เท่ากับ  3.7-4.2 จิกะเฮิรตซ์
2.  ระยะห่างกัน  3 องศา  ให้ใช้ย่านความถี่ของสัญญาณ  12/14  จิกะเฮิรตซ์  หรือย่าน KU แบนด์  โดยมีแบนด์วิดท์ของสัญญาณอัป-ลิงก์เท่ากับ  14.0-14.5  จิกะเฮิรตซ์  และมีแบนด์วิดท์ของสัญญาณดาวน์-ลิงก์เท่ากับ  11.7-12.2 จิกะเฮิรตซ์ 
             นอกจากนี้สภาพอากาศ เช่น ฝนหรือพายุ  ก็สามารถทำให้สัญญาณผิดเพี้ยนไปได้เช่นกัน
             สำหรับการส่งสัญญาณข้อมูลนั้นในแต่ละเครื่องทบทวนสัญญาณจะมีแบนด์วิดท์เท่ากับ  36  เมกะเฮิรตซ์  และมีอัตราเร็วการส่งข้อมูลสูงสุดเท่ากับ  50 เมกะบิตต่อวินาที
             ข้อเสีย ของการส่งสัญญาณข้อมูลทางดาวเทียมคือ  สัญญาณข้อมูลสามารถถูกรบกวนจากสัญญาณภาคพื้นอื่น ๆ ได้  อีกทั้งยังมีเวลาประวิง
(Delay Time)  ในการส่งสัญญาณเนื่องจากระยะทางขึ้น-ลง ของสัญญาณ  และที่สำคัญคือ มีราคาสูงในการลงทุนทำให้ค่าบริการสูงตามขึ้นมาเช่นกัน  
 

การสื่อสารข้อมูลในระดับเครือข่าย 
 
โพรโทคอล (protocol)
                 
คือ ข้อกำหนดหรือข้อตกลที่ใช้ควบคุมการสื่อสารข้อมูลในเครือข่าย ไม่ว่าจะเป็นการสื่อสารข้อมูลระหว่างเครื่องคอมพิวเตอร์กับอุปกรณ์อื่นๆ
เครื่อง คอมพิวเตอร์หรืออุปกรณ์เครือข่าย ที่ใช้โพรโทคอลชนิดเดียวกันเท่านั้น จึงจะสามารถติดต่อและส่งข้อมูลระหว่างกันได้ โพรโทรคอลจึงมีลักษณะ
เช่นเดียวกับภาษาภาษาที่ใช้ในการสื่อสารของมนุษย์ที่ต้องใช้ภาษาเดียวกัน จึงสาามารถสื่อสารกันได้เข้าใจ
             สำหรับในเครือข่าย โพรโทคอลจะเป็นตัวกำหนดลักษณะหรือองค์ประกอบต่างๆ ที่ใช้ในการสื่อสาร ไม่ว่าจะเป็นรูปแบบการแทนข้อมูล
วิธี การในการรับ-ส่งข้อมูล รูปแบบสัญญาณรับ-ส่ง อุปกรณ์หรือสื่อกลางในการส่งข้อมูล การกำหนดหรือการอ้างอิงตำแหน่ง การตรวจสอบความผิดพลาด
ของข้อมูล รวมถึงความเร็วในการรับ-ส่งข้อมูล
        
             มาตรฐานกลางที่ใช้ในการส่งข้อมูลระหว่างคอมพิวเตอร์ในระบบเครือข่าย คือ มาตรฐาน OSI (Open Systems Interconnection Model) ซึ่งทำให้ทั้งคอมพิวเตอร์และอุปกรณ์เชื่อมต่อต่างๆ สามารถเชื่อมโยงและใช้งานในเครือข่ายได้             ในปี ค.ศ.1977  องค์กร ISO  (International Organization for Standard)  ได้จัดตั้งคณะกรรมการขึ้นกลุ่มหนึ่ง  เพื่อทำการศึกษา จัดรูปแบบมาตรฐาน  และพัฒนาสถาปัตยกรรมเครือข่าย และในปี ค.ศ.1983  องค์กร ISO  ก็ได้ออกประกาศรูปแบบของสถาปัตยกรรมเครือข่ายมาตรฐาน ในชื่อของ "รูปแบบ OSI"   (Open Systems Interconnection Model)  เพื่อใช้เป็นรูปแบบมาตรฐานในการเชื่อมต่อระบบคอมพิวเตอร์ อักษร "O"  หรือ " Open" ก็หมายถึง การที่คอมพิวเตอร์หรือระบบคอมพิวเตอร์หนึ่งสามารถ  "เปิด" กว้างให้ คอมพิวเตอร์หรือระบบคอมพิวเตอร์อื่นที่ใช้มาตรฐาน 
OSI เหมือนกันสามารถติดต่อไปมาหาสู่ระหว่างกันได้
 
             จุดมุ่งหมายของการกำหนดมาตรฐาน OSI นี้ขึ้นมาก็เพื่อจัดแบ่งการดำเนินงานพื้นฐานของเครือข่ายและกำหนดหน้าที่การทำงานในแต่ละชั้น ซึ่งแบ่งออกได้เป็น 7 ชั้น โดยหลักเกณฑ์ในการกำหนดมีดังต่อไปนี้
1.               ไม่แบ่งโครงสร้างออกในแต่ละชั้นจนมากเกินไป  
2.               แต่ละชั้นมีหน้าที่การทำงานแตกต่างกัน  
3.               หน้าที่การทำงานคล้ายกันจะถูกจัดให้อยู่ในชั้นเดียวกัน  
4.               เลือกเฉพาะการทำงานที่เคยใช้ได้ผลประสบความสำเร็จมาแล้ว  
5.               กำหนดหน้าที่การทำงานเฉพาะง่ายๆ เผื่อว่ามีการออกแบบหรือเปลี่ยนแปลงใหม่ อุปกรณ์ฮาร์ดแวร์ และซอฟต์แวร์จะได้ไม่ต้องเปลี่ยนแปลงตาม  
6.               มีการกำหนดอินเตอร์เฟซมาตรฐาน  
7.               มีความยืดหยุ่นในการเปลี่ยนแปลงโปรโตคอลในแต่ละชั้น  
โครงสร้างของสถาปัตยกรรมรูปแบบ  OSI  
สามารถการแบ่งออกเป็น  7  เลเยอร์ และในแต่ละเลเยอร์ได้มีการกำหนดหน้าที่การทำงานไว้ดังต่อไปนี้
       1.เลเยอร์ชั้น  Physical  เป็นชั้นล่างสุดของการติดต่อสื่อสาร  ทำหน้าที่ส่ง-รับข้อมูลจริง ๆ จากช่องทางการสื่อสาร (สื่อกลาง)  ระหว่างคอมพิวเตอร์เครื่องหนึ่งกับคอมพิวเตอร์เครื่องอื่น ๆ มาตรฐานสำหรับเลเยอร์ชั้นนี้จะกำหนดว่าแต่ละคอนเนคเตอร์ (Connector)  เช่น
RS-232-C  มีกี่พิน  (PIN)  แต่ละพินทำหน้าที่อะไรบ้าง ใช้สัญญาณไฟกี่โวลต์  เทคนิคการมัลติเพล็กซ์แบบต่าง ๆ ก็จะถูกกำหนดอยู่ในเลเยอร์ชั้นนี้
       2.  เลเยอร์ชั้น  Data Link  จะเป็นเสมือนผู้ตรวจสอบ หรือควบคุมความผิดพลาดในข้อมูลโดยจะแบ่งข้อมูลที่จะส่งออกเป็นแพ็กเกจหรือเฟรม  ถ้าผู้รับได้รับข้อมูลถูกต้องก็จะส่งสัญญาณยืนยันกลับว่าได้รับข้อมูลแล้ว  เรียกว่าสัญญาณ ACK (Acknowledge)  ให้กับผู้ส่ง  แต่ถ้าผู้ส่งไม่ได้รับสัญญาณ ACK  หรือได้รับสัญญาณ NAK (Negative Acknowledge)  กลับมา  ผู้ส่งก็อาจจะทำการส่งข้อมูลไปให้ใหม่  อีกหน้าที่หนึ่งของเลเยอร์ชั้นนี้คือ ป้องกันไม่ให้เครื่องส่งทำการส่งข้อมูลเร็วจนเกิดขีดความสามารถขเเครื่องผู้รับจะรับข้อมูลได้
       3.  เลเยอร์ชั้น  Network  เป็นชั้นที่ออกแบบหรือกำหนดเส้นทางการเดินทางของข้อมูลที่ส่ง-รับในการส่งผ่าน ข้อมูลระหว่างต้นทางและปลายทาง  ซึ่งแน่นอนว่าในการสื่อสารข้อมูลผ่านเครือข่ายการสื่อสารจะต้องเส้นทางการรับ-ส่งข้อมูลมากกว่า  1  เส้นทาง  ดังนั้นเลเยอร์ชั้น  Network  นี้จะมีหน้าที่เลือกเส้นทางที่ใช้เวลาในการสื่อสารน้อยที่สุด  และระยะทางสั้นที่สุดด้วย  ข่าวสารที่รับมาจากเลเยอร์ชั้นที่  4 จะถูกแบ่งออกเป็นแพ็กเกจ ๆ
ในชั้นที่  3  นี้  

       4.  เลเยอร์ชั้น Transport บางครั้งเรียกว่า เลเยอร์ชั้น Host-to-Host หรือเครื่องต่อเครื่อง และจากเลเยอร์ชั้นที่  4  ถึงชั้นที่  7  นี้รวมกันจะเรียกว่า  เลเยอร์  End-to-End ในเลเยอร์ชั้น  Transport  นี้เป็นการสื่อสารกันระหว่างต้นทางและปลายทาง (คอมพิวเตอร์กับคอมพิวเตอร์)  กันจริง ๆ เลเยอร์ชั้น  Transport  จะทำหน้าที่ตรวจสอบว่าข้อมูลที่ส่งมาจากเลเยอร์ชั้น  Session  นั้นไปถึงปลายทางจริง ๆ หรือไม่  ดังนั้นการกำหนดตำแหน่งของข้อมูล (Address)  จึงเป็นเรื่องสำคัญในชั้นนี้  เนื่องจากจะต้องรับรู้ว่าใครคือผู้ส่ง และใครคือผู้รับข้อมูลนั้น
       5.  เลเยอร์ชั้น  Session  ทำหน้าที่เชื่อมโยงระหว่างผู้ใช้งานกับคอมพิวเตอร์เครื่องอื่น ๆ โดยผู้ใช้จะใช้คำสั่งหรือข้อความที่กำหนดไว้ป้อนเข้าไปใน ระบบ  ในการสร้างการเชื่อมโยงนี้ผู้ใช้จะต้องกำหนดรหัสตำแหน่งของจุดหมายปลายทางที่ต้องการติดต่อสื่อสารด้วย  เลเยอร์ชั้น  Session  จะส่งข้อมูล ทั้งหมดให้กับเลเยอร์ชั้น Transport  เป็นผู้จัดการต่อไป  ในบางเครือข่ายทั้งเลเยอร์ Session  และเลเยอร์  Transport   อาจจะเป็นเลเยอร์ชั้นเดียวกัน
       6.  เลเยอร์ชั้น  Presentation  ทำหน้าที่เหมือนบรรณารักษ์  กล่าวคือคอยรวบรวมข้อความ (Text)  และแปลงรหัส  หรือแปลงรูปของข้อมูล ให้เป็นรูปแบบการสื่อสารเดียวกัน  เพื่อช่วยลดปัญหาต่าง ๆ ที่อาจจะเกิดขึ้นกับผู้ใช้งานในระบบ
       7.  เลเยอร์ชั้น  Application  เป็นเลเยอร์ชั้นบนสุดของรูปแบบ OSI  ซึ่งเป็นชั้นที่ใช้ติดต่อกันระหว่างผู้ใช้โดยตรงซึ่งได้แก่  โฮสต์คอมพิวเตอร์  เทอร์มินัลหรือคอมพิวเตอร์ PC  เป็นต้น  แอปพลิเคชันในเลเยอร์ชั้นนี้สารมารถนำเข้า หรือออกจากระบบเครือข่ายได้โดยไม่จำเป็นต้องสนใจว่า จะมีขั้นตอนการทำงานอย่างไร  เพราะจะมีเลเยอร์ชั้น Presentation  เป็นผู้รับผิดชอบแทนอยู่แล้ว  ในรูปแบบ OSI  เลเยอร์นั้น  Application  จะทำการติดต่อกับเลเยอร์ชั้น Presentation โดยตรงเท่านั้น  โปรโตคอลของในแต่ละชั้นจะแตกต่างกันออกไป  แต่อย่างไรก็ตามการที่เครื่องคอมพิวเตอร์ 
หลาย ๆ เครื่องจะติดต่อสื่อสารกันได้  ในแต่ละเลเยอร์ของแต่ละเครื่องจะต้องใช้โปรโตคอลแบบเดียวกัน  หรือถ้าใช้โปรโตคอลต่างกันก็ต้องมีอุปกรณ์  หรือซอฟร์แวร์ที่สามารถแปลงโปรโตคอลที่ต่างกันนั้นให้มีรูปแบบเป็นอย่างเดียวกัน  เพื่อเชื่อมโยงให้คอมพิวเตอร์ทั้ง  2  เครื่องสามารถติดต่อกันได้


รูปร่างเครือข่ายคอมพิวเตอร์ 
 
           การเชื่อมต่อเครือข่ายมีอยู่ด้วยกันหลายลักษณะ แต่ลักษณะที่นิยมใช้นั้นมีอยู่ด้วยกัน 4 ลักษณะ ได้แก่ 
แบบดาว (Star Network) 

          เป็นลักษณะของการต่อเครือข่ายที่ Work station แต่ ละตัวต่อรวมเข้าสู่ศูนย์กลางสวิตซ์ เพื่อสลับตำแหน่งของเส้นทางของข้อมูลใด ๆ ในระบบ ดังนั้นใน โทโปโลยี แบบดาว คอมพิวเตอร์จะติดต่อกันได้ใน 1 ครั้ง ต่อ 1 คู่สถานีเท่านั้น เมื่อสถานีใดต้องการส่งข้องมูลมันจะส่งข้อมูลไปยังศูนย์กลางสวิทซ์
ก่อน เพื่อบอกให้ศูนย์กลาง สวิตซ์มันสลับตำแหน่งของคู่สถานีไปยังสถานีที่ต้องการติดต่อด้วย ดังนั้นข้อมูลจึงไม่เกิดการชนกันเอง ทำให้การสื่อสารได้รวดเร็ว เมื่อสถานีใดสถานีหนึ่งเสีย ทั้งระบบจึงยังคงใช้งานได้ ในการค้นหาข้อบกพร่องจุดเสียต่างๆ จึงหาได้ง่ายตามไปด้วย แต่ก็มีข้อเสียที่ว่าต้องใช้งบประมาณสูง ในการติดตั้งครั้งแรก ลักษณะการเชื่อมต่อ เป็นดังรูป


ข้อดี
ติดตั้งและดูแลง่าย
แม้ว่าสายที่เชื่อมต่อไปยังบางโหนดจะขาด โหนดที่เหลืออยู่ก็ยังจะสามารถทำงานได้ ทำให้ระบบเน็ตเวิร์กยังคงสามารถทำงานได้เป็นปกติ
การมี Central node อยู่ตรงกลางเป็นตัวเชื่อมระบบ ถ้าระบบเกิดทำงานบกพร่องเสียหาย ทำให้เรารู้ได้ทันทีว่าจะไปแก้ปัญหาที่ใด
ข้อเสีย
เสียค่าใช้จ่ายมาก ทั้งในด้านของเครื่องที่จะใช้เป็น central node และค่าใช้จ่ายในการติดตั้งสายเคเบิลในสถานีงาน
การขยายระบบให้ใหญ่ขึ้นทำได้ยาก เพราะการขยายแต่ละครั้งจะต้องเกี่ยวเนื่องกับโหนดอื่นๆ ทั้งระบบ
เครื่องคอมพิวเตอร์ศูนย์กลางมีราคาแพง
แบบวงแหวน (Ring Network) 

          ได้ถูกออกแบบให้ใช้ Media Access Units (MAU) ต่อรวมกันแบบเรียงลำดับเป็นวงแหวน แล้วจึงต่อ คอมพิวเตอร์ (PC) ที่เป็น Workstation หรือ Server เข้ากับ MAU ใน MAU 1 ตัวจะสามารถต่อออกไปได้ถึง 8 สถานี เมื่อสถานีถัดไปนั้นรับรู้ว่าต้องรับข้อมูล แล้วมันจึงส่งข้อมูลกลับ เป็นการตอบรับ เมื่อสถานีที่จะส่งข้อมูลได้รัยสัญญาณตอบรับ แล้วมันจึงส่งข้อมูลครั้งแรก แล้วมันจะลบข้อมูลออกจากระบบ เพื่อให้ได้ใช้ข้อมูลอื่นๆ ต่อไป ดังนั้นทุกสถานีบน โทโปโลยี วงแหวนจะได้ทำงานทั้งหมดซึ่งจะคอยเป็นผู้รับและผู้ส่งแล้วยังเป็นรีพีทเตอร์ ในตัวอีกด้วย ข้อมูลที่ผ่านไปแต่ละสถานี นั้น ข้อมูลที่เป็นตำแหน่งที่ อยู่ตรงกับ สถานีใด สถานีนั้นจะรับข้อมูลเก็บไว้ แต่มันจะไม่ลบข้อมูลออกจากระบบ มันยังคงส่งข้อมูลต่อไป ดังนั้นผู้ส่งข้อมูลครั้งแรกเท่านั้นที่จะเป็นผู้ลบข้อมูล ออกจากระบบ ครั้นเมื่อสถานีส่ง TOKEN มาถามสถานีถัดไปแล้วแต่กลับไม่ได้รับคำตอบ สถานีส่ง TOKEN จะ ทวนซ้ำข้อมูลเป็นครั้งที่สอง ถ้ายังคงไม่ได้รับคำตอบ จึงส่งข้อมูลออกไปได้ เหตุการณ์ดังกล่าวนี้ เป็นอีกแนวทางหนึ่งในการแก้ปัญหาที่ไม่ให้ระบบหยุดชะงักการทำงานลงของระบบ เนื่องจากสถานีหนึ่งเกิดการเสียหาย หรือชำรุด ระบบจึงยังคงสามารถทำงานต่อไปได้ ลักษณะการเชื่อมต่อ

ข้อดี
ใช้เคเบิลและเนื้อที่ในการติดตั้งน้อย
คอมพิวเตอร์ทุกเครื่องในเน็ตเวิร์กมีโอกาสที่จะส่งข้อมูลได้อย่างทัดเทียมกัน
ข้อเสีย
หากโหนดใดโหนดหนึ่งเกิดปัญหาขึ้นจะค้นหาได้ยากว่าต้นเหตุอยู่ที่ไหน และวงแหวนจะขาดออก
แบบบัส (Bus Network) 

          เป็น ลักษณะของการนำเครื่องคอมพิวเตอร์มาเชื่อมต่อ เป็นระบบเครือข่าย ด้วยสายเคเบิลยาวต่อเนื่องกันไปเรื่อย ๆ โดยมีคอนเน็คเตอร์ในการเชื่อมต่อ โดยลักษณะของการส่งหรือรับข้อมูล จะเป็นการส่งข้อมูล ทีละเครื่องในช่วงเวลาหนึ่ง ๆ เท่านั้นจากนั้นเครื่องปลายทาง ก็จะส่งสัญญาณข้อมูลกลับมา และในการเชื่อมต่อในระบบ Bus นี้จะต้องมี T-Connector ที่เป็นตัวกลางในการเชื่อมต่อ และมี Terminator เป็นอุปกรณ์ปิดปลายสายสัญญาณ ของทั้ง
ระบบ ซึ่ง Terminaltor จะคอยเป็นตัวดูดซับสัญญาณไม่ให้มีการไหลกับไป กวนกับระบบสัญญาณอื่นในสาย ซึ่งโดยทั่วไป จะมีค่าความต้านทานประมาณ
50 โอห์ม บางครั้งถ้าไม่มี Terminator เราสามารถให้ตัว R ทั่วไปที่ใช้ในอุปกรณ์อิเล็คทรอนิคส์ขนาด 50 โอห์มแทนได้เหมือนกัน ลักษณะการเชื่อมต่อก็จะเป็นดังรูป
 

ข้อดี
ไม่ต้องเสียค่าใช้จ่ายในการวางสายเคเบิลมากนัก
สามารถขยายระบบได้ง่าย
เสียค่าใช้จ่ายน้อย
ข้อเสีย
อาจ เกิดข้อผิดพลาดง่าย เนื่องจากทุกเครื่องคอมพิวเตอร์ดต่อยู่บนสายสัญญาณเพียงเส้นเดียว ดังนั้นหากมีการขาดที่ตำแหน่งใดตำแหน่งหนึ่ง ก็จะทำให้เครื่องอื่นส่วนใหญ่หรือทั้งหมดในระบบไม่สามารถใช้งานได้ตามไปด้วย
การ ตรวจหาโหนดเสีย ทำได้ยากเนื่องจากขณะใดขณะหนึ่งจะมีคอมพิวเตอร์เพียงเครื่องเดียวเท่านั้น ที่สามารถส่งข้อความออกมาบนสายสัญญาณ ดังนั้นถ้ามีเครื่องคอมพิวเตอร์จำนวนมากๆ อาจทำให้เกิดการคับคั่งของเน็ตเวิร์ก ซึ่งจะทำให้ระบบช้าลงได้
 
แบบผสม (Hybrid Network) 

             เป็น เครือข่ายคอมพิวเตอร์ที่ผสมผสานระหว่างรูปแบบต่างๆ หลายๆ แบบเข้าด้วยกัน คือจะมีเครือข่ายคอมพิวเตอร์ย่อย หลายๆ เครือข่ายเพื่อให้เกิด ประสิทธิภาพสูงสุดในการทำงานเครือข่ายบริเวณกว้างเป็นตัวอย่างเครือข่ายผสม ที่พบเห็นกัน มากที่สุด เครือข่ายแบบนี้จะเชื่อมต่อเครือข่ายเล็ก-ใหญ่ หลากหลายแบบเข้าด้วยกันเป็นเครือข่ายเดียว ซึ่งเครือข่ายที่ถูกเชื่อมต่ออาจจะอยู่ห่างกันคนละจังหวัด หรือ อาจจะอยู่คนละประเทศก็เป็นได้
 

 
การเข้าถึงระยะไกล
              คุณสมบัติ เด่นอย่างหนึ่งของเครือข่ายแบบผสมก็คือ ผู้ใช้สามารถเชื่อม ต่อกับเครือข่ายจากระยะไกลเช่น อยู่ที่บ้าน หรืออยู่ภาคสนามได้ ในการ เชื่อมต่อก็จะได้คอมพิวเตอร์สั่งโมเด็มหมุนสัญญาณให้วิ่งผ่านสาย โทรศัพท์ไปเชื่อมต่อกับเครือข่ายหลังจากการเชื่อมต่อผู้ใช้สามารถเข้าไป
เรียกใช้ข้อมูลได้สมือนกับว่ากำลังใช้เครือข่ายที่บริษัท

การบริหารเครือข่ายเนื่องจากเครือข่ายผสมเป็นการผสมผสานเครือข่ายหลายแบบเข้าด้วย กัน ซึ่งแต่ละเครือข่ายก็มีรายละเอียดทางเทคนิคแตกต่างกันไป
ดังนั้น การบริหารเครือข่ายก็อาจจะยากกว่าเครือข่ายแบบอื่น ๆด้วยเหตุนี้ บริษัทที่มีเครือข่ายผสมขนาดใหญ่ของตัวเองก็มักจะตั้งแผนก
ที่ทำหน้าที่ดูแลและบริหารเครือข่ายนี้โดยเฉพาะ

ค่าใช้จ่ายโดยปกติเครือข่ายแบบผสมจะมีราคาแพงกว่าเครือข่ายแบบต่างๆ เพราะ เครือข่ายแบบนี้เป็นเครือข่ายขนาดใหญ่ และมีความซับซ้อนสูง
นอกจาก นี้ยังต้องมีการลงทุนเกี่ยวกับระบบรักษาความปลอดภัยมากกว่า เครือข่ายอื่นอีกด้วย เนื่องจากเป็นการเชื่อมต่อระยะไกล
 
อุปกรณ์ที่ใช้การสื่อสารข้อมูลคอมพิวเตอร์ 
 
ฮับ หรือ รีพีทเตอร์ (Hub, Repeater) 
          เป็น อุปกรณ์ที่ทวน และขยายสัญญาณ เพื่อส่งต่อไปยังอุปกรณ์อื่น ให้ได้ระยะทางที่ยาวไกลขึ้น ไม่มีการเปลี่ยนแปลงข้อมูลก่อนและหลัง การรับ-ส่ง และไม่มีการใช้ซอฟท์แวร์ใดๆ มาเกี่ยวข้องกับอุปกรณ์ชนิดนี้ การติดตั้งจึงทำได้ง่าย ข้อเสียคือ ความเร็วในการส่งข้อมูล จะเฉลี่ยลดลงเท่ากันทุกเครื่อง เมื่อมีคอมพิวเตอร์มาเชื่อมต่อมากขึ้น

สวิทช์ หรือ บริดจ์ (Switch, Bridge) 
          เป็นอุปกรณ์สำหรับเชื่อมต่อ เครือข่ายท้องถิ่น หรือ แลน (LAN) ประเภทเดียวกัน ใช้โปรโตคอลเดียวกัน สองวงเข้าด้วยกัน เช่น ใช้เชื่อมต่อ อีเธอร์เน็ตแลน (Ethernet LAN) หรือ โทเคนริงก์แลน (Token Ring LAN) ทั้ง นี้ สวิทช์ หรือ บริดจ์ จะมีความสามารถในการเชื่อมต่อ ฮาร์ดแวร์ และตรวจสอบข้อผิดพลาด ของการส่งข้อมูลได้ด้วย ความเร็วในการส่งข้อมูล ก็มิได้ลดลง และติดตั้งง่าย

เร้าเตอร์ (Router) 
           เป็นอุปกรณ์ที่ทำงานคล้าย สวิทช์ แต่จะสามารถเชื่อมต่อ ระบบที่ใช้สื่อ หรือสายสัญญาณต่างชนิดกันได้ เช่น เชื่อมต่อ อีเธอร์เน็ตแลน
(Ethernet LAN) ที่ส่งข้อมูลแบบ ยูทีพี (UTP: Unshield Twisted Pair) เข้ากับ อีเธอร์เน็ตอีกเครือข่าย แต่ใช้สายแบบโคแอ็กเชียล
(Coaxial cable) ได้ นอกจากนี้ยังช่วยเลือก หรือกำหนดเส้นทางที่จะส่งข้อมูลผ่าน และแปลงข้อมูลให้เหมาะสมกับการนำส่ง แน่นอนว่าการติดตั้งย่อมยุ่งยากมากขึ้น

เกทเวย์ (Gateway) 
           เป็น อุปกรณ์ที่มีความสามารถสูงสุด ในการเชื่อมต่อเครือข่ายต่างๆ เข้าด้วยกัน โดยไม่มีขีดจำกัด ทั้งระหว่างเครือข่ายต่างระบบ หรือแม้กระทั่ง โปรโตคอล จะแตกต่างกันออกไป เกทเวย์ จะแปลงโปรโตคอล ให้เหมาะสมกับอุปกรณ์ที่ต่างชนิดกัน จัดเป็นอุปกรณ์ที่มีราคาแพง และติดตั้งใช้งานยุ่งยาก เกตเวย์บางตัว จะรวมคุณสมบัติในการเป็น เร้าเตอร์ ด้วยในตัว หรือแม้กระทั่ง อาจรวมเอาฟังก์ชั่นการทำงาน ด้านการรักษาความปลอดภัย ที่เรียกว่า ไฟร์วอลล์ (Firewall) เข้าไว้ด้วยกัน
โมเดม (Modem) 

 

 
 

สรุป 
การสื่อสารข้อมูล  เป็น กระบวนการถ่ายโอนหรือแลกเปลี่ยนข้อมูลกันระหว่างผู้ส่งและผู้รับ โดยผ่านช่องทางสื่อสาร เช่น อุปกรณ์อิเล็กทรอนิกส์ หรือคอมพิวเตอร์เป็นตัวกลางในการส่งข้อมูล เพื่อให้ผู้ส่งและผู้รับเกิดความเข้าใจซึ่งกันและกันโดยจะจะ แปลงข้อมูลเป็นสัญญาณ หรือรหัสเสียก่อนแล้วจึงส่งไปยังผู้รับ และเมื่อถึงปลายทางหรือผู้รับก็จะต้องมีการแปลงสัญญาณนั้น กลับมาให้อยู่ในรูปที่มนุษย์ สามารถที่จะเข้าใจได้ โดยอาศัยอุปกรณ์หรือสัญญาณต่างๆ ในการรับส่งข้อมูลด้วย  ในระหว่างการส่งอาจจะมีอุปสรรค์ที่เกิดขึ้นก็คือ สิ่งรบกวน (Noise) จาก ภายนอกทำให้ข้อมูลบางส่วนเสียหาย หรือผิดเพี้ยนไปได้ซึ่งระยะทางก็มีส่วนเกี่ยวข้อง ด้วยเพราะถ้าระยะทางในการส่งยิ่งมากก็อาจจะทำให้เกิดสิ่งรบกวนได้มากเช่นกัน จึงต้องมีหาวิธีลดสิ่งรบกวน เหล่านี้ โดยการพัฒนาตัวกลางในการสื่อสารที่จะทำให้เกิดการรบกวนน้อยที่สุด 
แหล่งที่มา :
 http://www.chakkham.ac.th/technology/network/index.htm

ไม่มีความคิดเห็น:

แสดงความคิดเห็น